

The ACROSS project has received funding from the European High-Performance Computing Joint
Undertaking (JU) under grant agreement No 955648. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and Italy, France, Czech Republic, United Kingdom,
Greece, Netherlands, Germany, Norway.

D4.3 – Analysis and definition of scheduling strategies for

resource optimization

Deliverable ID D4.3

Deliverable Title Analysis and definition of scheduling strategies for resource
optimization

Work Package WP4

Dissemination Level PUBLIC

Version 0.6

Date 2022 – 08 – 31

Status FINAL

Deliverable Leader LINKS

Main Contributors Scionti A. (LINKS), Vercellino C. (LINKS), BULL, IT4I

Disclaimer: All information provided reflects the status of the ACROSS project at the time of writing and
may be subject to change. This document reflects only the ACROSS partners’ view and the European
Commission is not responsible for any use that may be made of the information it contains.

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 2 of 20

Published by the ACROSS Consortium

Document History

Version Date Author(s) Description

0.1 2022-06-10 LINKS Foundation ToC (Draft)

0.2 2022-07-06 LINKS Foundation First contributions to the first chapter

0.3 2022-07-11 LINKS Foundation Contribution to the second chapter

0.4 2022-07-18 LINKS Foundation Contribution to second and third chapters

0.5 2022-07-22 LINKS Foundation Finalizing the document

0.6 2022-08-01 LINKS Foundation Internal review comments have been addressed

Table of Contents

Document History ... 2

Table of Contents .. 2

Glossary .. 2

List of Figures ... 3

List of Tables ... 3

Executive Summary .. 4

1 Introduction .. 6

1.1 Scope ... 6

1.2 Related documents.. 7

2 Workflow-aware Optimization Strategies ... 8

2.1 Main Problem Statement and Analysis ... 8

2.2 Workflow-aware scheduling strategies ... 10

2.3 Workflow-aware Advance Resource Planner (WARP) .. 13

3 Resources Usage Optimization ... 16

3.1 Fine-grain allocation of HPC resources... 16

3.2 Cloud resources management ... 17

4 Conclusions ... 19

References ... 20

Glossary

Acronym Explanation

ANN Artificial Neural Network

CLI Command Line Interface

CPU Central Processing Unit

CWL Common Workflow Language

DL Deep Learning

FPGA Field Programmable Gate Array

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 3 of 20

FMLE Fast Machine Learning Engine

GA Genetic Algorithm

GPU Graphic Processing Unit

HPC High-Performance Computing

HPDA High-Performance Data Analytics

ILP Integer Linear Program

ML Machine Learning

SH Schedule Horizon

SNN Spiking Neural Network

SotA State-of-the-Art

TOSCA Topology and Orchestration Specification for Cloud Applications

UI User Interface

WARP Workflow-aware Advanced Resource Planner

WAS Workflow-Aware Scheduling

WP Work Package

List of Figures

Figure 1 - Typical situation for scheduling jobs on available resources... 9
Figure 2 - Identification of the Schedule Horizon (SH) and reservation of computational resources in advance 9
Figure 3 - Example of the allocated resources over time (resources are discretized) and reservations made for CPU and

HW accelerators ... 10
Figure 4 - High level architecture of the WARP module, along with the batch scheduler plugin. ... 14
Figure 5 - Interaction flow among different components of the ACROSS orchestrator. ... 15
Figure 6 - HyperQueue (HQ) architecture .. 16

List of Tables

Table 1 - Variables of the optimization programming model related to the allocation of compute resources (reservations).

 ... 12
Table 2 - Settings of model variables as constants ... 13

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 4 of 20

Executive Summary

The ACROSS project relies on the integration of various sophisticated hardware and software technologies

into a platform that enables efficient execution of workflows composed of steps involving different types of

operations (i.e., large numerical simulations, machine learning and deep learning tasks, HPDA, etc). Thus,

energy efficiency and performance are achieved, on the one hand, through the large adoption of hardware

accelerators (different accelerators can be targeted depending on the workflow step, e.g., GPUs, FPGAs, etc.).

On the other hand, the ‘effective’ execution of such kind of workflows on current and upcoming supercomputers

is closely related to the way the underlying management software operate and more specifically on the

implemented and applied resource management and workload scheduling strategies.

This deliverable focuses on the analysis and definition of scheduling strategies for resource optimization that

are under development in ACROSS. In the ACROSS project, different HPC infrastructures are accessible,

each of which has its peculiarities that must be captured and translated into specific resource management

strategies, which is one of the core elements of the ACROSS orchestrator. Nevertheless, the ACROSS

orchestrator must be flexible enough to adapt to all these situations without requiring major changes to its

internal logic.

For this reason, this deliverable aims at thoroughly illustrating the specific strategies and related software

technologies underlying the resource management and workload distribution. As such, the document begins

with an overview of some of the limitations we see in the State-of-the-Art batch scheduling systems. This is

followed by the description of what the ACROSS multi-level orchestrator can do to overcome these limitations,

i.e., enabling a deterministic execution of workflows and possibly applying optimal scheduling to jobs belonging

to separate workflows (even if they belong to the same computational project). This clear statement of the

problem is then translated as a formal description of the problem, along with the proposed solution. The

description of the main components (WARP, HyperQueue, FMLE/Ystia) involved in resource management is

given.

Position of the deliverable in the whole project context

This deliverable covers technical aspects related to the management of the compute resources that are

accessible in the context of the ACROSS project, and specifically how these resources can be reserved (in

advance) and how the reserved resources can be filled in with workflows’ jobs in an optimal way. To this end,

the deliverable restricts its focus to a specific set of components of the orchestrator architecture, which are the

ones closely involved in the resource reservation process, the planning of execution of workflows and the

management of the acquired resources with a fine granularity. As such, this deliverable covers the activities

carried out in WP4 and specifically related to T4.3. Nevertheless, the strategies described in this document

have a close relation with the activity carried out in WP3, since the management of resources with a fine

granularity also involves the access to accelerators. Also, the activity related to the investigation of

neuromorphic simulation is linked: FMLE has been selected as the main tool for driving the training of Deep

Learning models (ANNs), possibly building a pipeline that includes their conversion to Spiking Neural Networks

(SNNs) to support the execution on neuromorphic hardware; likewise, Ystia has been selected as the main

tool for the deployment of all the necessary software on the cloud. Connection with WP2 and WP3 is seen, as

the WARP module and its interaction with the other orchestrator components is part of the overall co-design

approach. Pilots (WP5, WP6 and WP7) provided useful insights of their workflows and, as such, this

information has driven some of the choices made for the resource management strategy implemented by the

WARP in conjunction with StreamFlow and HyperQueue.

Description of the deliverable

This deliverable is organized as follows. An introductory chapter is devoted to providing the context, i.e.,

supercomputer resources are today managed through State-of-the-Art (SotA) batch scheduler systems, which

are configured by system administrators to implement specific access policies. As such, the batch scheduler

internal logic is optimized to maximize resource usage and to guarantee a fair access to all the users. Given

this, the focus of this document is the analysis and definition of scheduling strategies for resource optimization,

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 5 of 20

with chapter two starts stating the main limitations that batch scheduler systems are subject to. With some

concrete examples, the chapter expands the discussion by formalizing the resource management problem as

it is considered in ACROSS. The identified strategy to overcome the presented limitations is implemented

within the logic of the WARP module (see D4.1 – System Requirements Analysis for Orchestrator Design [9],

D2.2 – Description of key technologies and platform design [10]), thus, part of the document is devoted to

describe the main architecture of the WARP module, the interaction between its internal components and the

other orchestrator components. The third chapter provides information concerning the way HPC compute

resources acquired by the WARP module can be managed with a fine granularity. Similarly, the chapter

describes how cloud resources are managed by means of Ystia to enable FMLE integration and to support the

eventual execution of pre-, post-processing and visualization steps that do not require the use of HPC cluster’s

resources.

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 6 of 20

1 Introduction

Applications and their associated workflows are becoming more complex than in the past, often involving

processing steps related to machine learning (ML), deep learning (DL), or high-performance data analytics

(HPDA). These workflows also combine these types of steps within iterative loops with some specific

dependencies on each other, and sometime require jobs to run longer than the queue to which the jobs are

submitted allows. Job scheduling and compute resource allocation in the HPC domain is done by means of

State-of-the-Art (SotA) batch schedulers. HPC system administrators are able to configure batch schedulers

to consider the diversity of resources available on the machines and to tune the scheduling policies in such a

way so that priorities match those required by their business, fair access to the resources is still guaranteed

and the resource utilization is maximized. Although, batch schedulers can be configured in very sophisticated

ways to fulfil such requirements, the configuration is generally done at the beginning, while the requirements

may change over the time. Also, while scheduling algorithms can take into account job dependencies, their

visibility is restricted to the level of the single jobs, thus limiting the search space for optimizations. Whenever

the submitted jobs take more time than the maximum allotted for a certain queue, jobs must be checkpointed

and restarted. In this context being able to reduce as much as possible the impact of queuing time may provide

an improvement over the workflow execution.

With this in mind, being able to optimize the execution of workflows by providing a mechanism for their more

deterministic execution represents an important objective in the context of WP4. Considering system

requirements (see D4.1 [9]), resource optimization passes through the capability of controlling the allocation

of resources with a granularity that is below that of the single nodes; in other words, being able to assign a

fraction of the node’s resources to a job and the remaining to another enables the orchestrator to fulfil the co-

location requirement.

To this purpose, the ACROSS orchestration architecture (as described in D4.1 [9]) includes a set of

components whose main objective is that of i) reserving the compute resources needed to run the jobs with a

degree of visibility that spans the set of workflows belonging to the same computational project (i.e., the whole

set of resources that are associated to a given group of users); ii) planning the execution of jobs on top of the

reserved resources to provide (a more) deterministic execution of the workflows; iii) controlling the resource

allocation in such a way that the resources of a single node can be fractioned and nodes can be assigned to

different jobs concurrently. Finally, iv) cloud resources can be accessed to execute specific parts of the

workflows, taking the benefit of virtualization. In the following chapters, all these aspects will be covered, along

with the description of the architecture of WARP, which is the module responsible for making advance resource

reservations.

It is worth to note, that the mechanisms behind the implementation of WARP aim at not breaking the scheduling

policy implemented by the batch schedulers, and at not negatively affecting the priority levels already set in

the queues.

1.1 Scope

The scope of this document is diverse, although it focuses on aspects related to the way computing resources

are acquired and managed. In particular, we analyse some of the limitations we have encountered when relying

only on SotA batch schedulers to improve the execution of workflows belonging to the same computational

project. While batch schedulers can maximize resource utilization and ensure equitable distribution among

users, their visibility is still limited to the job level. Also, the execution of jobs whose maximum clock wall time

exceed that allotted by the submission queue can benefit from an improved approach for acquiring compute

resources. Once the problem is stated, a more formal formulation follows. This latter serves as the background

for defining and implementing the resource allocation logic within the WARP module along with the mechanism

for reserving resources in advance. As such, the main architecture devised for the WARP module is presented.

Scheduling strategies for resource optimization are not restricted to the approaches for getting access to the

compute resources but also involve those mechanisms that allow to optimally distribute the workload on those

resources. To this end, HyperQueue provides the necessary machinery to ‘assign’ the execution of jobs (and

consequently assigning tasks contained in the jobs) on the reserved resources, with a granularity that is lower

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 7 of 20

than that of an entire node. These mechanisms are discussed too. Similarly, the document describes how

Ystia tools are used to acquire and manage cloud resources, as they are exploited by FMLE and workflows.

1.2 Related documents

ID Title Reference Version Date

[RD.1] Description of key technologies and platform design D.2.2 0.8 30-11-2021

[RD.2] System Requirements Analysis for Orchestrator Design D.4.1 0.7 28-02-2022

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 8 of 20

2 Workflow-aware Optimization Strategies

Workflows are a convenient way to describe a series of steps that must be performed as part of the execution

of an application; as such, these steps may have (data) dependencies and execution relationships that can be

conveniently expressed as a graph structure. Nodes represents the steps to be executed, while the edges

represent the relationships/dependencies between the nodes. In most cases, execution steps map directly to

the submission of a job to the HPC execution infrastructure, so optimizing the execution of these jobs seems

to be reasonable as applications can gain benefits in terms of reducing the overall execution time. The

submission process is managed by the HPC batch scheduler, which has two tasks: i) maximizing the use of

machine resources (i.e., trying to saturate the machine resources by running as many independent jobs as

possible); ii) scheduling jobs in such a way that satisfies queues’ priorities and enforced scheduling policies

are fulfilled.

State-of-the-Art (SotA) batch schedulers apply very sophisticated algorithms to ensure resource usage

maximization and guaranteeing the respect of the queues’ priorities and scheduling policies. These latter are

generally predefined at the beginning by system administrators considering specific conditions of the machine,

which may result in a mismatch with conditions over the time. Besides these limitations, other factors have

been found in ACROSS to negatively impact on the execution of workflows. Despite batch schedulers

configurations allowing the consideration of job dependencies to optimize their scheduling, other factors

influence the overall execution. As such, the queuing time that each submitted job experiences is

nondeterministic over the entire execution of the workflows; indeed, the queuing times strongly vary with the

number and type of already submitted jobs, with the resulting times being very difficult to learn. The ACROSS

co-design activity has allowed us to devise a solution to cope with this limitation, without the need of

implementing complex strategies requiring the collection of large historical data sets, while leveraging on

advanced features already exposed by SotA batch schedulers.

The proposed solution has been found to provide advantages also in other contexts in which the queuing time

becomes the major execution limiting factor. Indeed, queues are associated, among the others, to a maximum

allotted time (i.e., maximum wall clock time) for the execution of a job. This latter implies that jobs whose

execution exceeds the maximum wall clock time are stopped. Thus, to guarantee the proper execution, such

kind of jobs must implement sophisticated checkpoint and recovery strategies, i.e., a snapshot of the status of

the job is taken before the job is stopped and then it is used to restart the job in a later point in time; although

this process guarantees the correctness in the job execution it does not avoid the job to incur time in being

queued.

The ACROSS solution relies on a sophisticated mechanism to acquire the HPC execution resources in

advance which then allows planning the execution of the jobs by considering their specific data dependencies

and relationships. In the following, details are provided concerning the process of resource acquisition and the

way ACROSS orchestrator tries to optimally schedule jobs on top of them.

2.1 Main Problem Statement and Analysis

As stated before, SotA batch schedulers (e.g., SLURM, Altair PBSpro, etc.) are configured in such a way their

visibility over the workflows is (generally) confined to that of the single jobs. Although it is possible to define

dependencies among them, visibility over the entire workflow or even among multiple workflows represents a

non-common setup. In ACROSS, we claim that this kind of visibility level is of worth to improve the execution

of workflows by limiting or even better avoiding the impact of the jobs’ queuing time on the overall execution.

Figure 1 depicts the typical situation where resources are assigned to running jobs in such a way their usage

is maximized over the time, and where resource assignment is also planned for jobs waiting in the queues

(scheduled jobs) depending on the specific priorities and scheduling policies enforced by the system

administrators. As the reader can easily realize, the batch scheduler keeps track of the jobs that are executing

(along with their status) and those that are waiting in the queues; based on the enforced priorities and

scheduling policies, it also creates a schedule for the jobs currently waiting in the queues. This translates into

assigning computing resources to these jobs, while the schedule is periodically updated to reflect the status of

queues.

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 9 of 20

In this situation, it makes sense to imagine querying the batch scheduler and retrieving the information that

allows us to determine which are the last scheduled jobs. Also, based on the information carried out by the

jobs concerning their maximum wall clock time, it becomes possible to combine this information and determine

a point in time in the future, where it is reasonable to assume that no one job is currently scheduled (or is far

enough in time that affecting the current schedule is deemed acceptable). We define this point in time as the

schedule horizon (SH).

Figure 1 - Typical situation for scheduling jobs on available resources

Thus, the SH defines the temporal boundary, starting from which, it is possible to reserve (in advance) compute

resources, which are later assigned to specific jobs. The advantage offered by this approach, is that it

minimizes the interference with the batch scheduler logic; furthermore, it does not require any change to the

scheduling policies and queue priorities. Figure 2 depicts the same situation of Figure 1 with the SH and

reserved resources highlighted.

Figure 2 - Identification of the Schedule Horizon (SH) and reservation of computational resources in advance

Worth to mention is the fact that the proposed approach has been devised to be an alternative management

model with respect to the traditional batch submission model; as such, we see the applicability of the proposed

management model to those cases where the workflows are composed of (heterogeneous) steps with

dependencies and where more guarantees regarding the overall duration of the workflow execution are

needed. Moreover, our approach is intended to facilitate the achievement of three important features, i.e., the

co-scheduling of jobs that needs to communicate each other but reside on different queues/locations, the co-

location of jobs that share resources (i.e., the resources at the node level can be fractured and assigned to

different jobs with a granularity that is finer than that of the single node) and to reduce the start-up time of

checkpointed jobs. Conversely, we see the traditional batch scheduling approach well suited for all those cases

where the application is less sensitive to the waiting time of queued jobs.

time

re
s
o

u
rc

e
s

J2

J1

J3

J4
J6 J5

J8 J7

…

Queue-1

Queue-N B
a

tc
h

S
c

h
e

d
u

le
r

J5

J6 J7

J8

Running jobs Scheduled Job execution

time

re
s
o

u
rc

e
s

J2

J1

J3

J4
J6 J5

J8 J7

…

Queue-1

Queue-N B
a

tc
h

S
c

h
e

d
u

le
r

J5

J6 J7

J8

Running jobs Scheduled Job execution

SH

Reserved

Resources

Reserved Resources in Advance

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 10 of 20

2.2 Workflow-aware scheduling strategies

The proposed workflow-aware scheduling (WAS) strategy is based on two main pillars: on one side, the

capability of making resource reservations in advance and, on the other hand, to assign those reserved

resources to jobs also belonging to different workflows. As such, the WAS strategy aims at reducing the overall

execution time for completing a workflow (deterministic execution) and maximizing the resource usage. The

former is fulfilled by planning the execution of jobs belonging to the same workflow as closer in time as possible,

still preserving dependencies. The latter is fulfilled by defining the problem as a combinatorial optimization

problem that is solved periodically to provide the optimal job allocation. As such, the reservations are treated

as bins, while the jobs to execute are the objects to use filling the bins. Possibly, the formulation of the

combinatorial optimization problem can be as such that both the above mentioned requirements are fulfilled

by feasible solutions.

While the proposed approach is general enough to consider the planning of job execution over reserved

resources for workflows belonging to different groups of users, for simplicity, we assume to restrict the

assignment of resource reservations to jobs belonging to workflows which are part of the same computational

project. As such, the reservation and allocation machinery are simplified, since it can operate under the

assumption that the owners of the jobs planned for the execution are all authorized to get access to the same

pool of resources. Indeed, a computational project defines the overall amount of compute resources (generally

expressed as core hours) that a certain group of users can consume for running their jobs/workflows.

2.2.1 Problem Statement

The statement of the problem starts from the identification of some requirements and assumptions we need to

make to properly devise the strategy for making reservation of the resources.

The first thing to note is that the physical domains involved in the resource allocation process (time, amount

of compute resources required –i.e., cores, amount of memory required) must be discretized. This implies the

ability to define a kind of unitary values for such domains. Concerning the time unit, the discretization can be

done considering a temporal window in the order of tens of minutes. On the other hand, the minimum compute

resource that can be allocated is the single core of a CPU. The memory unit can be derived considering that

the entire memory pool of a node is uniformly distributed to all the available cores. Another point to consider

is the heterogeneity of the resources, i.e., the availability of hardware accelerators within the nodes. In this

case, the simplest assumption is that the minimum compute resource that can be allocated is the single

accelerator within the node (i.e., the single GPU card, the single FPGA card, etc.).

Figure 3 - Example of the allocated resources over time (resources are discretized) and reservations made for

CPU and HW accelerators

The problem of finding the best resource reservation is reverted into an optimization model that will be solved

online. In [1][2] the authors modelled the scheduling problem as an optimization problem solved using a

heuristic (genetic algorithm –GA). The authors suggested that the scheduling strategy should respond in a

range of 15sec - 30sec to 1min, so we will tune our reservation strategy to operate in a time window of few

time

resources

H
W

 a
c
c
e
l.

C
P

U
 c

o
re

s

D D

E

E

E

E

E

E

A B C

C

B

B

B

C

C

C

C

C

C

C

C

Allocated HW accelerator

Allocated CPU core

Available resource (core/acc.)

Resource reservation

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 11 of 20

minutes. The complexity of finding a proper allocation of resources (which is based on making a reservation

for a future point in time) strictly depends on the dimension of the search space for a solution. This in turn

depends on the physical domains we decide to consider; as such, to simplify the problem, in a first instance

we assume that the required memory to make the reservation is set to the maximum available on the nodes.

Given this, the number of dimensions (and thus of variables in the associated optimization problem) to treat is

reduced. Nevertheless, this assumption is valid in general, being potentially not optimal from the perspective

of the memory allocation. To solve this problem, a subsequent optimization step can be performed, to

determine if a configuration of the reservation requiring less memory is available. Figure 3 depicts a typical

situation where the coloured squares represent the already allocated resources (discretized in the time and

resource –cores– dimensions). Despite the long-term goal will be that of optimizing the execution of the whole

set of workflows submitted within a given computational project, in a first phase we focused on an approach

where we target to optimize the execution of a given workflow. Given that, each workflow belonging to the

same computational project will be treated independently from the others.

The objective of the resource reservation strategy is that of finding the optimal shape of the reservations in

such a way the time required to complete the execution of a given workflow is minimized (the red boxes in

Figure 3). To this end, it is reasonable to allow the resource allocation strategy to combine different

reservations to create the shape. For instance, in Figure 3, the reservation for the CPU cores may combine

three subsequent reservations identified with A, B and C labels. Similarly, for the GPUs, combining

reservations D and E allows the system to create the optimal shape. To pursue this overall goal, it seems

reasonable to investigate a two-step optimization approach: dividing the problem in two phases will allow to

reduce the dimensionality of the problem and eventually even its complexity in terms of computational time to

retrieve feasible solutions. To be more precise the two identified steps consist of:

• STEP-1. Sort the list of submitted workflows (within a properly defined time window) and select the

first in the sorted list. Given the workflow, extract the minimal graph representing the execution steps

of the workflow; to this end, it is worth to note that in realistic workflows (as those defined within the

ACROSS project) some of the operations to be performed can be aggregated in one single step in the

graph. The resulting graph has for each node the requirements in terms of CPU cores and amount of

memory (although, to simplify the initial finding of a feasible solution, this latter is assumed equals to

the maximum available in the nodes). Furthermore, such representation, reasonably, is obtained from

StreamFlow [14], which provides features to extract an internal representation from the input CWL

description (see D4.1 [9]). STEP-1 strategy will advocate for the definition of a sorting policy, which

will consider workflows’ arrivals time, resources’ requirements of the jobs and priority scores, a

particular attention will be paid to avoid unfair scheduling and workflows starvation.

• STEP-2. Given the graph representation for the selected workflow, finding a (feasible) optimal

allocation of the compute resources that minimises its overall execution time (i.e., the makespan),

considering the expected status of the resources that is retrieved through the batch scheduler. STEP-

2 will take advantage of the deterministic/fixed information coming from STEP-1 to model the

optimization problem for the actual resources’ reservation. Solving the optimization problem will be

achieved through the implementation of a solver function (based on a meta-heuristic [1][3][4][5],

traditional optimization process, or a combination of different techniques) –i.e., the optimization phase.

For the sake of the correct problem modelling, the envisioned optimization phase will consider only

those supercomputer partitions whose capability is equal or larger to that required to execute the steps

of the workflow; specifically, the memory amount will be assumed to be the maximum available on the

nodes. As such, this simplifies the optimization problem definition by reducing the number of variables

(indeed the variable used to model the memory can be avoided). In a subsequent step, the memory

usage can be further optimized by selecting, among the N best feasible solutions, the one that also

minimizes the allocated memory per node.

Willing to formalize the above-described approach, we can define the programming optimization problem; as

such we can define the following entities:

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 12 of 20

• 𝒢(𝜐, 𝜀): the graph representing the reduced workflow coming from the sorted list from STEP-1, the set

of nodes 𝜐 represents the blocks of resources to be allocated (bear in mind that even if the blocks are

managed individually from the optimization point of view, the actual resource reservation can reserve

more than one block at a time); ∀𝑖 ∈ 𝜐 it is known the amount of resource required (i.e., 𝓇𝑖), if there

are any specific hardware requirements (i.e., GPU, FPGA, etc.), and the execution wall time 𝓌𝑖. The

set of directed edges 𝜀 defines the allocation order: 𝒩𝑖
+ = {𝑗 ∈ 𝜐: (𝑖 → 𝑗) ∈ 𝜀} describes, for each 𝑖 ∈ 𝜐,

the execution blocks that must be allocated after 𝑖.

• 𝒯: is the set of all the timeslots available across all the resources.

• ℛ: is set of resources.

To formalize the problem, the variables reported in Table 1 are used.

Table 1 - Variables of the optimization programming model related to the allocation of compute resources
(reservations).

Variable Description

𝑥𝑖𝑗
𝑠 Set to 1 if block 𝑖 is assigned to resource 𝑗 in the timeslot 𝑠; 0 otherwise

𝑦𝑖𝑗 Set to 1 if block 𝑖 is assigned to resource 𝑗; 0 otherwise

𝑧𝑖𝑠 Set to 1 if block 𝑖 is assigned in the timeslot 𝑠; 0 otherwise

𝑇𝑖 Ending timeslot for block 𝑖 ∈ 𝜐, 𝑇𝑖 ∈ ℕ

𝑡𝑖 Starting timeslot for the block 𝑖 ∈ 𝜐, 𝑡𝑖 ∈ ℕ

𝑇 Ending timeslot for the whole workflow, 𝑇 ∈ ℕ

𝑡 Starting timeslot for the whole workflow, 𝑡 ∈ ℕ

The objective function for the problem is thus expressed as the minimization of the difference between ending

timeslot and the starting timeslot of the workflow; in other words, the goal is that of minimizing the makespan

of the workflow execution (it is worth to mention that minimizing the makespan is equivalent to maximize the

packing efficiency [4]):

min (𝑇 − 𝑡)

The constraints of the programming model are defined to properly represent the requirements of the resource

scheduling problem; particular attention is paid to provide a linear formulation. Thus, the resulting overall model

is a constrained Integer Linear Program (ILP).

To properly retrieve the makespan of the whole workflow, 𝑇 is the maximum of the ending times of the blocks

and 𝑡 is the minimum of the starting time:

𝑇𝑖 ≤ 𝑇

t ≤ 𝑡𝑖

In the solution, the dependencies of the blocks must be preserved, so the starting time of each block should
be greater than the ending time of the preceding blocks in the workflow:

𝑇𝑖 < 𝑡𝑘 ∀𝑖 ∈ 𝜐, ∀𝑘 ∈ 𝒩𝑖
+

s ∙ z𝑖𝑠 ≤ 𝑇𝑖 ∀𝑖 ∈ 𝜐, ∀𝑠 ∈ 𝒯

s ∙ z𝑖𝑠 ≥ 𝑡𝑖 ∀𝑖 ∈ 𝜐, ∀𝑠 ∈ 𝒯

When a block is assigned to a certain resource, it must run for all the required time on that specific resource:

∑ x𝑖𝑗
𝑝𝑠+𝑤𝑖

𝑝=𝑠 = 𝑤𝑖 ∙ 𝑦𝑖𝑗 ∀𝑖 ∈ 𝜐, ∀𝑗 ∈ ℛ, ∀𝑠 ∈ 𝒯

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 13 of 20

∑ 𝑦𝑖𝑗𝑗∈ℛ = 𝑟𝑖 ∀𝑖 ∈ 𝜐

When a block is assigned to a specific timeslot, it should have access to all the computational resources it

needs:

∑ x𝑖𝑘
𝑠

𝑘∈ℛ = 𝑟𝑖 ∙ 𝑧𝑖𝑠 ∀𝑖 ∈ 𝜐, ∀𝑠 ∈ 𝒯

∑ 𝑧𝑖𝑠𝑠∈𝒯 = 𝑤𝑖 ∀𝑖 ∈ 𝜐

In a specific timeslot, for a certain resource, just one block can be scheduled, thus leading to the following

constraint:

∑ x𝑖𝑗
𝑠

𝑖∈𝜐 ≤ 1 ∀𝑗 ∈ ℛ, ∀𝑠 ∈ 𝒯

In this formulation it is important that some of the variables will assume a constant value, thus actually not

being proper optimization variables, but acting as constant parameters: compute resources that do not satisfy

the requirements for a certain block allocation are cut out from the possible solution; in the same way if a

certain timeslot is not available for a certain resource it is not considered. This leads to setting variables as

reported in Table 2:

Table 2 - Settings of model variables as constants

Variable Description

𝑥𝑖𝑗
𝑠 = 0 When the assignment of block 𝑖 to timeslot 𝑠 and to resource 𝑗 is not possible

𝑦𝑖𝑗 = 0 For all resources 𝑗 that are not compatible with the requirements of block 𝑖

𝑧𝑖𝑠 = 0 When no resource is available at timeslot 𝑠 for block 𝑖

2.3 Workflow-aware Advance Resource Planner (WARP)

The Workflow-aware Advanced Resource Planner (WARP) is the orchestration component that oversees

executing the solver function for the optimization problem stated in Section 2.2.1. As such, the module has to:

1. Keep an ordered list of the workflows, from which to select the current one to optimize the resource

allocation; for the selected list, the minimal graph representation should be retrieved from

StreamFlow.

2. Retrieve the information from the batch scheduler concerning the current scheduling of the jobs (see

Figure 3, coloured squares) which define the starting condition for the optimization process.

3. Solving the instance of the allocation problem and through the batch scheduler creating the proper

resource reservations.

To accomplish with these three steps, a modular architecture has been devised. The architecture foresees a

frontend component which exposes a command line interface (CLI) through which the user can interact with

the system, as well as the other components (e.g., StreamFlow) that can perform specific operations. We

expect to have a frontend instance running separately for each entity (user, orchestration component) that

needs to perform some action (e.g., check the status of a workflow, perform a reservation, etc.). A second

component is represented by the backend, which asynchronously interact with the batch scheduler to retrieve

the information related to the current job schedule, as well as to perform the reservations. Given the limited

visibility of the internal information kept by the batch scheduler, a plug-in has been devised as the best way to

expose the required information, as well as to provide the right way of interacting with the batch scheduler.

Indeed, it is important (due to the asynchronicity in the process, which implies to introduce a latency between

the point in time in which status of the jobs’ schedule is collected and the one in which reservation is made) to

guarantee that the reservation is requested for a point in time in the future that is not yet occupied by any

scheduled job in the meantime.

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 14 of 20

To properly keep the information concerning the reservations made and the status of the workflows that are

executing, as well as the information regarding the other workflows in the ordered list, a permanent data store

is created. This data store is implemented as a SQL database, which can manage concurrent read/written

operations issued by the WARP components. Structure of the WARP module is depicted in Figure 4 where, in

a first instance, we see the data store being managed directly by the backend component.

Figure 4 - High level architecture of the WARP module, along with the batch scheduler plugin.

The data store is organized into a set of tables that persistently keep track of the submitted workflows, their

structure, execution state and reservations made. Considering the structure reported in Figure 4, the

interaction between the components is as follows:

1. Users submit a new workflow (described as a CWL file coupled with a StreamFlow file) through the

WARP CLI frontend. As such, the frontend, launches a StreamFlow instance which will be responsible

for running that specific workflow. The WARP frontend also keeps track (in the data store) of the

process ID associated to the specific StreamFlow instance.

2. From the CWL and StreamFlow files, the minimal graph representation for the workflow’s steps is

derived and written in the data store. This step can be accomplished by StreamFlow through a specific

command exposed by the WARP frontend.

3. Once the graph representation is available, the WARP backend can order the workflows as described

in Section 2.2.1 and get the one with the highest priority with regards to the used ordering

parameter(s) –e.g., workflows’ arrivals time, resources’ requirements of the jobs and priority scores.

4. Given the selected graph, the reservations can be made. To this end, the WARP backend contacts

the batch scheduler plugin to retrieve the information concerning the current schedule and determine

the proper point in time starting from which to make the reservation.

5. Once the reservation is available, the WARP backend writes back the associated information (i.e.,

reservation name to be use for job submission) on the data store. Then, periodically the StreamFlow

instance that was associated to the workflow will poll the backend to see when the resources will be

available for running jobs:

• StreamFlow takes care of executing the workflow’s steps once the reserved resources

become available.

This execution flow is exemplified in Figure 5.

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 15 of 20

Figure 5 - Interaction flow among different components of the ACROSS orchestrator.

ti
m

e

ti
m

e

ti
m

e

ti
m

e

ti
m

e

ti
m

e

ti
m

e

ti
m

e

WARP

Frontend

Data

Store

WARP

Backend

StreamFlow

(SF)
YSTIA

HyperQueue

(HQ) B
a
tc

h

S
c
h

e
d

u
le

r

C
o

m
p

u
te

R
e
s
o

u
rc

e
sHPC Node / VM

C
o

m
p

u
ta

ti
o

n
a

l
P

ro
je

c
t

…

U1

U2

Un

Submit a workflow (WF)

Running SF instance using input CWL

Parse

CWLPass back the workflow graph

Record

graph

[A
s
y
n

c
h

]

Get WF

Perform resources reservation for the WF

Get compute resources reservation identifier
Record

reservation

info

Waiting compute resources

[A
s
y
n

c
h

]

Polling for getting the reservation(s)

Request reservation info

Query data

store

Return info

Return the reservation

Execute WF steps
Execute WF steps

Execution completed
Execution completed

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 16 of 20

3 Resources Usage Optimization

The optimization of resource usage is achieved by controlling the reserved resources with a fine granularity.

Generally, HPC resources can be acquired by submitted jobs with the granularity of the entire single node,

making them in some cases over-provisioned. For instance, heterogeneous nodes where both CPU cores and

GPUs are available are partially used if the running jobs use only the CPU or GPU part. To overcome this

limitation, in ACROSS, the orchestrator relies on the HyperQueue (HQ) [6] tool to provide more control over

the reserved resources. Through this tool it will be possible to better optimize the resource usage and fulfil the

co-location requirement.

On the other hand, cloud resources should be properly managed. The acquisition process of cloud resources

is quite different from that of HPC resources. Generally, cloud resources (in this case we refer to them as

virtualized resources) are requested on-demand, and they must be explicitly released once the execution of

the jobs complete. Also, the execution of jobs on these virtualised resources may require the installation of the

supporting execution environment (deploying); to this purpose, tools for automating these processes are used.

In ACROSS we envisioned the orchestrator in such a way it will be able to target the use of both HPC and

cloud resources when needed. To accomplish with this goal, YSTIA modules are integrated in the high-level

orchestrator architecture. As such, workflows that require the access to cloud virtual instances will be managed

too. FastML Engine (FMLE) tool has been designed to take advantage of the HPC resources to perform the

training of large machine learning and deep learning models; however, FMLE is flexible enough to eventually

target cloud resources as the main compute horsepower, when training performance are not the primary

concern. As such, one case where we see the access to cloud resources is that of FMLE. Indeed, ACROSS

aims to also include the management of Spiking Neural Networks (SNNs) under the umbrella of FMLE,

leveraging the capability of YSTIA to allocate/deallocate cloud resources, deploying/undeploying execution

environments.

3.1 Fine-grain allocation of HPC resources

HyperQueue (HQ) [6] is a tool developed by IT4Innovations to simplify the execution of large workflows on

supercomputers. As such, the tool receives the workflow to execute and automatically requests appropriate

resources from the batch scheduler; once resources become available, it schedules the execution of tasks on

those resources. In this context, it is worth to mention that, on one side, the unit of computation that can be

scheduled is a task (i.e., a single execution of a program, for instance), in contrast to what is managed by the

batch schedulers —i.e., a job, that appears to HQ as a composition (a graph) of many tasks. Jobs are still

managed by HQ, but for the purpose of acquiring compute resources. On the other hand, it is worth to mention,

that HQ can allocate fractions of the whole acquired resources to the tasks, having the notion/visibility of the

resources at a finer grain with respect to batch schedulers.

Figure 6 - HyperQueue (HQ) architecture

This translates in being able to assign from a single core to an entire CPU socket to a task, being able to

specify the policy of pinning tasks to CPU cores (by default, HQ enforces the scheduling of concurrent tasks

on those workers that has enough resources available to fulfill the request, but leaving the system scheduler

HQ

server

Log server

Compute Resources

Compute Resources

H
Q

 w
o

rk
e

r
H

Q
 w

o
rk

e
r

. . .

W
o

rk
e
r

N
o

d
e
s

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 17 of 20

to decide how to move threads among the CPU cores/sockets), and how much memory each task should use.

It has also the ability to scale from a single node to several nodes.

To accomplish with these capabilities, HQ leverages a master-workers model (see Figure 6), meaning that

there is a master entity (HQ server) which is responsible for interacting with users (or external components of

the orchestrator), receiving the workflow and scheduling the tasks on the workers. The scheduling policy uses

a work-stealing approach which is based on Tako [7] and RSDS (Rust Dask Scheduler) [8] previously designed

and implemented by IT4Innovations. Workers can (directly) exchange data with the HQ server bypassing the

batch scheduler’s queues (eventually, workers can communicate each other), resulting in a fast interaction

between the acquired resources and the application using them. Eventually, HQ can be configured in such a

way, the output of the execution of the task-graph is streamed out to an external server where a log file is

generated.

From the perspective of ACROSS, all these capabilities are useful in pursuing the goal of optimizing the usage

of compute resources in the managed systems. Indeed, being able to control the allocation of tasks with the

granularity of the CPU core, as well as being able to target the execution on specific resources (e.g., a GPU

or a FPGA accelerator) makes HQ the right complement to the WARP and Streamflow modules. In this context,

it will be the WARP module that acquires the resources and makes them available to the HQ server/workers.

HQ will be used by StreamFlow for submitting the tasks to execute on the resources reserved by the WARP

module.

At the time of writing this deliverable, the HQ development team is working on extending its capability even

more than what described above. Specifically, it is targeting to introduce the support for tasks requiring more

than one worker to execute (e.g., MPI tasks). Also, this feature will be exploited to better support the execution

of ACROSS pilot workflows.

3.2 Cloud resources management

FastML Engine (FMLE) [11] is a tool designed by ATOS aimed at providing useful features for data scientists

to manage the steps related to modelling and training machine learning (ML) and deep learning (DL) models.

To this end, it manages the underlying operations needed to train the models (eventually using a distributed

approach) focusing on using HPC resources, managing the hyperparameter optimization process, as well as

managing different development frameworks (TensorFlow, Keras, Scikit-Learn, PyTorch, etc.). In ACROSS,

we foresee the usage of FMLE to support the modeling and training phases of ML/DL models that are defined

in the pilots; furthermore, we see FMLE as a building block for implementing a training toolchain supporting

the integration of dedicated tools to convert models into SNNs, supporting neuromorphic accelerators for the

inference stage. As such, our intention is that of allowing FMLE to access the needed compute resources for

performing the modeling/training operations, which can be both those on the HPC cluster and the cloud

partition. In this latter case (for instance, when training performance are not a major concern, a cluster of virtual

machines can be created and used for that purpose), it is needed to have a tool supporting the phases of

requesting virtual resources, deploying the necessary software frameworks, undeploying software and

relinquishing virtual resources. FMLE has been designed to integrate with the Ystia toolset, which provides all

the necessary machinery for accomplishing those needs.

Ystia is a toolset developed by ATOS to manage all the phases concerned with the allocation and usage of

compute, storage, and network resources on the cloud. As such, Ystia comes with two main components that

provides basically an interface (UI and CLI) and the actual engine performing all the necessary steps to

acquire, configure and then release resources (i.e., virtual machines). These two components are namely

Alien4Cloud and Yorc respectively.

Alien4Cloud (A4C) [12] is the front-end and contains an extensible catalogue of TOSCA (i.e., an interoperable

standard for describing cloud applications and the way they should be deployed on a set of resources)

components, an environment to design applications from this catalogue, and associated sequence of steps for

the deployment (i.e., an execution plan). It relies on an execution engine (by default Yorc – i.e., Ystia

orchestrator [13]) to manage application lifecycles and to run execution plan on the infrastructures supported

by the engine. This engine is TOSCA compatible and supports the application lifecycle management over

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 18 of 20

hybrid infrastructures (i.e., HPC clusters, Kubernetes, OpenStack, public clouds). It provides an

implementation of operations allowing the creation/deletion of virtualized (infrastructure) resources (e.g.,

compute instances, block-devices, etc.) on demand. It also allows the installation of applications and to run

execution plans on these infrastructures. By design, it can be extended by means of dedicated plugins, for

instance to support additional infrastructures. As mentioned above, Ystia relies on a catalogue of software

components; there is a publicly accessible catalogue named Ystia Forge that provides TOSCA components

and application templates that can be imported in the A4C component. For example, it provides the

implementation of a component that allows the installation of docker on a certain host and another TOSCA

component aimed at supporting the running of a docker container.

Interestingly, the access to cloud resources within the ACROSS project, is not limited to the perimeter of

providing the compute, storage, and network resources to support FMLE, but we foresee the possibility to

support directly the execution of applications (workflows); indeed, every time it is necessary to perform a

visualization, pre- or, post-processing steps that does not strictly require execution on HPC cluster’s resources,

it can be done on virtual machines whose configuration can be tuned time by time, and managed via the Ystia

tools.

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 19 of 20

4 Conclusions

One of the goals of the ACROSS project is to design and integrate a set of hardware and software technologies

to improve the execution of complex workflows as provided in WP5, WP6 and WP7. To this end, in addition to

the improvements –i.e., faster execution of applications– achieved by using faster hardware (CPUs) and

accelerators (e.g., GPUs, FPGAs, etc.), major gains can be achieved by developing an innovative

orchestration system. An important aspect in this context is the optimal management of the computing

resources, as they are the primary target (on one side) of the application level, and (on the other side) of the

allocation and scheduling policies.

Therefore, this deliverable focuses on the analysis and definition of allocation and scheduling strategies that

will be implemented in the ACROSS orchestration system to enable such optimal management of resources.

To this end, we have begun by considering the outcomes of other deliverables where we have collected and

analysed the system requirements that underlie the high-level orchestrator architecture, and then we focused

on the specific components that deal with the management of the life cycle of (computational) resources. In

this sense, the role of the WARP module, which we developed as one of the components of the orchestration

architecture, was analysed in detail.

In view of this, the deliverable examines what are the main constraints (found) in properly managing resources

having the visibility on the workflows to be executed. That gave us the opportunity to envision a different

strategy to acquire the required resources, with the objective of ensuring a deterministic execution, and thus

reducing the time generally wasted by jobs in the queues of batch schedulers. The deliverable describes (after

properly specifying the above constraints) the optimization model (i.e., an ILP model) in which our proposed

resource management (i.e., resource allocation) strategy is embedded. The optimal use of computational

resources is not limited to the orchestrator's ability to properly acquire these resources, but also to the way in

which the resources can be controlled and allocated to the various tasks to be executed. Therefore, in Chapter

3, we described two additional components of the architecture that allow HPC resources to be managed and

controlled in a fine-grained manner (i.e., allocating resources at the granularity of CPU cores), as well as cloud

resources.

To summarize the contribution of this deliverable, we have found that current (State-of-the-Art) batch

schedulers, even though they can maximize resource utilization and maintain fairness among users, do not

have the right visibility of the workflows that need to be executed. As workflows become larger and more

complex, this shortcoming must be addressed by implementing appropriate policies, possibly in addition to

existing tools. To address this requirement, in ACROSS we have focused on leveraging the specific features

of batch schedulers, to develop on top of the batch scheduler the logic that governs the acquisition of resources

and their allocation to tasks.

HPC Big DAta ArtifiCial Intelligence cross Stack PlatfoRm TOwardS
ExaScale

Deliverable nr.

Deliverable Title

Version

D4.14.3

System requirements analysis for orchestrator design

0.6– 31/08/2022

Page 20 of 20

References

[1] Fan, Yuping, et al. "Scheduling beyond CPUs for HPC." Proceedings of the 28th International

Symposium on High-Performance Parallel and Distributed Computing. 2019.

[2] Fan, Yuping, and Zhiling Lan. "Exploiting multi-resource scheduling for HPC." SC Poster (2019).

[3] Sanjay Kadam et al., Bio-inspired workflow scheduling on hpc platforms. Tehniˇcki glasnik, 15(1):60–68,

2021

[4] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya Akella, "Multi-

resource packing for cluster schedulers", ACM SIGCOMM Computer Communication Review,

44(4):455–466, 2014

[5] Fan, Yuping, and Zhiling Lan. "DRAS-CQSim: A reinforcement learning based framework for HPC

cluster scheduling." Software Impacts 8 (2021): 100077.

[6] https://github.com/It4innovations/hyperqueue

[7] https://github.com/spirali/tako/

[8] https://github.com/It4innovations/rsds

[9] ACROSS deliverable D4.1 – System Requirements Analysis for Orchestrator Design

https://www.acrossproject.eu/deliverables/

[10] ACROSS deliverable D2.2 – Description of key technologies and platform design

https://www.acrossproject.eu/deliverables/

[11] FastML Engine (FMLE) – Part of Codex AI Suite (https://atos.net/fr/solutions/codex-ai-suite)

[12] Alien4Cloud (https://alien4cloud.github.io/)

[13] Yorc – Ystia orchestrator (https://ystia.github.io/)

[14] StreamFlow – https://streamflow.di.unito.it

	Document History
	Table of Contents
	Glossary
	List of Figures
	List of Tables
	Executive Summary
	1 Introduction
	1.1 Scope
	1.2 Related documents

	2 Workflow-aware Optimization Strategies
	2.1 Main Problem Statement and Analysis
	2.2 Workflow-aware scheduling strategies
	2.2.1 Problem Statement

	2.3 Workflow-aware Advance Resource Planner (WARP)

	3 Resources Usage Optimization
	3.1 Fine-grain allocation of HPC resources
	3.2 Cloud resources management

	4 Conclusions
	References

